
which are known, i.e., by a bridge method [5]. Thus, a new method has been developed [4] 
for determining the group of thermophysical properties which can be classified as a differen- 
tial-bridge thermometric method, the calculation formulas for which are given by equations 
(12), (15), and (16). 

NOTATION 

x, ~, local values of the spatial coordinate and time; H, half-thickness of plate; T, 
temperature; T01, T02, initial constant temperatures of surfaces; b, rate of change of tem- 

perature; q, heat flux density; q0, initial heat flux density through surface of plate whose 
coordinate is x = H; ql, q2, heat flux densities at cross sections x = xl, x = x2; %, thermal 
conductivity; a, temperature conductivity; X = x/H, dimensionless coordinate; Fo = a~/x 2, 
Fourier number; cp, volumetric heat capacity, co = %/a; 6T, 6q, temperature and heat flux 
corrections; K, 7, relative temperature and heat flux corrections; R, thermal resistance. 
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METHOD FOR DETERMINING THE THERMOPHYSICAL CHARACTERISTICS 

OF ORTHOTROPIC BODIES 

Yu. M. Kolyano UDC 536.2.02 

The solution for the inverse coefficient problem of heat conduction for an ortho- 
tropic body is proposed. 

There exists a nondestructive monitoring method for determining the coefficients of 
thermal conductivity of orthotropic bodies [i]. In the method a standard sample (isotropic 
half-space), whose thermal conductivity is known, is heated together with the sample of in- 
terest, placed in series, with a mobile point source of heat moved along the surface of the 
samples at a constant rate and the excess limiting temperature of the surface of the samples 
along the line of heating is measured with the help of a temperature sensor moved at the same 
rate as the source at a fixed distance from it. The sample under study is made with two mu- 
tually perpendicular flat surfaces, perpendicular to its principal axis of heat conduction, 
and scanning over the flat surfaces along each of the three principal axes of heat conduc- 
tion is performed in sequence. The coefficient of thermal diffusivity and the volume heat 
capacity are not determined 

To determine the complex of thermophysical characteristics of orthotropic bodies by the 
method of nondestructive monitoring, we shall examine three samples in the form of ortho- 
tropic half-spaces z ~ 0, x ~ 0, y ~ 0, over whose surfaces z = 0, x = 0, and y = 0 a source 
of heat with power q [W] and a sensor for measuring the temperature at a fixed distance s 
for the heat source (Fig. i) move with a constant velocity v in the positive direction along 
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Fig. i. Geometric model of the method for determining the 
thermophysical characteristics of orthotropic bodies. 

the x, y, and z axes. Temperature ranges in whicb the thermophysical characteristics are 
temperature-independent are studied. The initial temperature equals t i. The temperature 
of the body at infinity equals ti, and its derivatives with respect to the coordinates equal 
zero. 

In this case, to determine the excess temperature in the first sample we have the heat- 
conduction equation 

ax---g-F-a--yT+-az-= coe ( z )  

and the boundary conditions 

ae I = - -  (78 ( x - -  V{c) ,5 (y) S+ (-~), == 0, -~-z=o (z)  

.01 =0 '~ o1~=o - -  o, ~ ~.~ +=  ay-  = o, (3) 

where @ = t - ti, and t is the temperature distribution; 6($) is the Oirac delta function; 

X = x/~, Y = Y/r Z = z/v~3, Q = q/v~ik2k3, V I = v/~v~T, @ = 80/8~, and �9 is the time. 

We Fourier transform Eq. (i) and the boundary conditions (2) under the conditions (3) 
with respect to X and Y and Laplace transform with respect to ~. This gives 

dZ z 

(5) 
L t . l ~  r 

where 

e) : 2~ .f .i o exp [i (IX + nY) -- s~l d X d Y d ~ ,  ? == -I l l  a + ~1 ~ I- c~s, 

i i" 5 (X -- V~'O exp (i[X - -  s~c) dXdT,  

$, q, x are the parameters of the Fourier transformations with respect to X and Y and the 
Laplace transformation with respect to 

The solution of Eq. (4) with the boundary conditions (5) is written in the form 

Q 
-- aV,~ v 6([, s) exp(--yZ) (6) 

We perform the inverse Fourier-Laplace transformation in (6) using the convolution 
theorem for the Fourier and Laplace transformations and the handbook data in [2]. 
sult we obtain the following expression for the excess temperature: 

@ ---- ~ exp ( 
4~R~ \ 

+ V-L-1 -~/~-~-~~ ) + exp ( - 2  

As a re ~ 

(7) 
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where R~ = -,/X~ + Y~ + Z~; X~ = X - V~; erfc ~ = 1 - erf ~; erf ~ is the error function; 

Y~ = YI~, Z1 = zl/v~, and, 01xlYlZ ~ is a moving coordinate system. 

For Z z = 0, Y~ = 0 we have 

xerfcI,X,, V/ c: q_ V~ V,c~) effc I / /~ \ 2 --~--I/c~ q-exp( 'x l '  (--~J- 2 
In the quasistationary state (~ + ~) from (8) it follows that 

-- Q exp( X~-}-[Xd V~c~). @Jz,%o;~,=0 2= [X,~ 2 

Let X I = -L I = -~/4'-~1. 
by the relation 

(8) 

(9) 

Then it follows from (9) that the measured temperature is given 

Q q 
o ~ -  2~r ,  2~ V 2 ~ . l  (lO) 

The excess temperature with the energy source and the temperature sensor moving along the 

y axis in the x = 0 plane of the half-space x ~ 0 can be determined analogously. It has the 

form 

4~Rz (--  (-~- erfr -~- V/" c: -}- 

where Y2 
is a moving coordinate system 

= Y - V2~, R= = (X~ + Y~ + Z~, V 2 = v/,/~2, X2 = x21v/~l, Z2 = z2 /v~ ,  and 02x2y2z2 

For X 2. 

Let Y= 
termined by the relation 

= O, Z 2 = O, and ~ + ~ we have 

Q exp( r2 + IFd V~co). (12) 

= -L 2 = -~/k~2. Then from (12) it follows that the measured temperature is de- 

Q q 
e. = 2~L2 -- 2= ]/ka~.3I " ( t3) 

If the energy source and the temperature sensor are moved with a constant velocity v along 
the z axis over the surface y = 0 of the half-space y _> O, then we find analogously 

O----4aRa Q exp(--~V'r @ 
(14) 

+ -Y 2 ~ 2 

= z - v3-~; R3 = ,/x~ + Y~ + z~;  x~ = x~/ ,A-7; Y~ = y ~ / / f T ;  and 03x~y~z~ i s  a moving where Z 3 
coordinate system. 

For X 3 = O, Y3 = 0 and ~ § ~ we have 

Q exp( Z~+IZ~I V3r 

If Z 3 = -Ls 
the relation 

= -s then from (15) we find that the measured temperature is given by 

Q q 

03-- 2~L3= 2~1//~ ft. (16) 

Since the temperature sensor is located at a distance s from the heat source with power 
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Fig. 2. Function ~(~, Fo I) as a 
function of the Fourier criterion 
Fo I for ~ = 0.05 (curve i) and 

= 0.5 (curve 2). 

f I I 

0 / z 3 Fo x 

q in each of the three samples, the quantity q/2~s = m remains constant during the heating 
process and the temperature measurements. From the expressions (i0), (13), and (16) we de- 
termine the coefficients of thermal conductivity along the x, y, and z axes in the form 

@2@a 010a 016)2 ( 17 ) 

From t h e  e x p r e s s i o n  ( 8 )  w i t h  X 1 = -L1 a t  t i m e  ~ = t 0 we h a v e  

2 -~o~- 2 ~ o ~ .  2 ~ o ~  = o,~(~, Fox), (18) 

where Fo 1 = a l T 0 / s  ~ = v T 0 / ~ ;  a 1 = t l / c  v .  

F i g u r e  2 shows a g raph  o f  t h e  f u n c t i o n  ~ ( ~ ,  Fo 1) (18 )  f o r  ~ = 0 . 0 5 ;  0~ as a f u n c t i o n  
of Yo I. Knowing the measured quantity % = @0/@l, we determined from the graph the corre- 
sponding value of Fo I. Having determined Fol, from the formula 

Fo~ l~ 
a I -- (19) 

%0 

we find the coefficient of thermal diffusivity along the x axis. If the coefficient of ther- 
mal diffusivity a I is known, then the volume heat capacity can be found from the formula 

c~ ---- s  (20) 

If the volume heat capacity c v (20) and the coefficients of thermal conductivity 12 and 
I a have been determined, then the coefficients of thermal diffusivity along the y and z axes 
can be determined from the formulas 

a2 ~ Z2/cv,  c% ---- ~a/c,~, ( 2 1 )  

Thus, the entire complex of thermophysical characteristics (17) and (19)-(21) of the 
orthotropic body has been determined. 

The power of the heat source q, appearing in the expressions for the coefficients of 
thermal conductivity (17) is usually assumed to be given. It can be determined, like in [I], 
using the corresponding (for example, (i0)) result for the isotropic standard semiinfinite 
sample 

@~= o)/~e, (22) 

where I e is the known thermal conductivity of the standard sample, @ e is its measured excess 
temperature in the quasistationary thermal state, and z~ = 0, y~ = 0, x I = -s From here it 
follows that q = 2~@eles 

Determining ~ from (22) and substituting its value into the expression (17) we arrive 
at the result obtained in [I], where it is pointed out that the method is characterized by 
a low error in the temperature measurements and high efficiency. To determine the entire 
complex of thermophysical characteristics there is no need to insert temperature sensors in- 
to the interior volumes of the samples under study. 

The proposed method of nondestructive monitoring for investigating the complex of ther- 
mophysical characteristics of orthotropic bodies can be used to measure temperatures on lines 
in the bounding surfaces of the samples. 
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NOTATION 

%1, %2, %3, coefficients of thermal conductivity along the x, y, and z axes; el, ~z, 
and a3, coefficients of thermal diffusivity along the x, y, and z axes; Cv, volume heat 
capacity; v, velocity of the heat source and temperature sensor; and q, power of the heat 
source. 
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EFFICIENCY OF "SHIELDLESS" METHOD OF EMPLOYING THE COLD 

OF VAPORS IN CRYOGENIC VESSELS WITH A WIDE NECK 

G. G. Zhun', V. F. Getmanets, R. S. Mikhal'chenko, 
P. N. Yurchenko, V. A. Miroshnichenko, and V. I. Shalaev 

UDC 536.21:536-48 

Methods for raising the efficiency of cryobiological vessels with liquid nitro- 
gen are proposed and realized, and a method for calculating their heat-shield- 
ing is developed and tested. 

Theoretically [i] the full utilization of the cold of vapors enables reducing by a fac- 
tor of 1.6-1.7 the flow of heat into small vessels with liquid nitrogen. Most often, for 
this purpose a large number of radiation shields are placed on the cold neck [2]. This con- 
struction is difficult to realize and labor-consuming, its mass is large, and for a number 
of reasons (small number of shields, decrease in the effective length of the neck, increase 
in the emissivity of the shields owing to cryogenic deposits, etc.), it does not permit full 
use of the cold of the vapors. The method of placing heat shields within a packet of screen- 
vacuum thermal insulation (SVTI), cooled with a drainage pipe [3], is less complicated but 
less efficient. 

In small vessels the full utilization of the cold of vapors can be achieved with the 
help of a simple "shieldless" method, when all SVTI layers are cooled with the drainage neck, 
along which they are stretched over the entire length and have a good "thermal" contact with 
it. The shieldless method is employed in serially produced Kh-34B cryobiological vessels 
[4], but it has not been adequately tested theoretically and experimentally. This is pri- 
marily a result of the fact that there are no experimental data and methods for calculating 
the components of the heat inflow into the vessel with the indicated construction taking in- 
to account the thermal interaction of the SVTI packet and the drainage neck. 

The purpose of this work is to test experimental and computational methods for evaluat- 
ing the components of the heat inflow taking into account the use of the cold of vapors and 
developing recommendations with regard to their efficiency. The components of the heat in- 
flow (with and without the use of the cold of the vapors) along the neck, its plug, and vapors 
of the cryogenic component were determined experimentally from their thermal conductivity 
and the temperature gradient in the lowest cold layers of these elements (5-7 mm thick), 
found with the help of differential thermocouples. The decrease in the temperature gradient 
in each element (including also in SVTI) owing to the use of the cold of the vapors deter- 
mines the efficiency of the "shieldless" method of cooling. The thermal conductivity of the 
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